
(/~~~~~~~

NRL Report 8047

Use of Abstract Interfaces in the
Development of Software for
Embedded Computer Systems

DAvID L. PARNAS

Department of Computer Science
University of North Carolina at Chapel Hill

Chapel Hill , N.C. 27514

and

Information Systems St4ff
Communication Sciences Division

June 3, 1977

~~~~~

‘ I  NAVAL RESEARCH LABORATORY

c_, W.dihigtoe, D.C.

Approved 1ø~ public releaie; dietnbution unlimited.

— .  
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~


—

S ECUeI I l y C LA S S I F I C A T I O N OF TH IS P A G E (Ith .n 0.,. Enla,.d)

0E0,’
~~~ 

“ ~~~~~ ~~~~~~~~~ P AC E R E A D  INSTRUCTI ON S

“ ‘~~~“‘ ~~~~~~“ “ ‘I ’ ’ ”  ~ BEFORE COMPLETING FORM
L R E P O R T  N U M B E R  2. GOVT A C C E S  0. 3. R E C I P I E N T S  C A T A L O G  N U M B E R

NRL Report 8047

- — .1. 1 .FC OF ~~~ UDW 1 & P E R I O D  C O V E R E I )

USE OF ABSTRACT INTERFACES IN THE f Inte ri m repert ~ a continuin g
DEVELOPMENT OF SOFTWARE FOR EMBEDDED NRL Proble iI _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

COMPUTER SYSTEMS , 6. P E R F O R M I N G  O R G .  R E P O R T  N U M B E R  

— - -.-- ---..- ,. -~~~~~. ‘
S. CO~~~~~~~CT ~~R G B A N T  N U M B E R ( S )

~~~~~~~~ 
DAVID L

1
kARNAS / // . / /

‘ ~~~~~
/

S. P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D A D D R E S S 10, RU~~R A M E L E M E N T , P R O J E C T , T A S K
A R E A S B ORI C U N I T N U M B E R S

Naval Research Laborator y NRL Problem 802-18
Washington , D.C. 20375 Project ~ F2 12 4 1
Code 5403 ________________________________

II . C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S 12. R E P O R T D A T E

Nava l Research Laboratory June 3. 1977
Washington , D .C. 20375 i s . N U M B E R OF P A G E S

33
14 M O N I T O R I N G A G E N C Y N A M E & A O D R E S S I I f dII f .r .nr f rom C o o r r o i t l n ~ Oh Io.) I S . S E C U R I T y C L A S S . (of thu r •p.,M)

Naval Electronics Systems Comman d UNCLASSIFIED
Arlington , Virg inia 20360 __________________________________

IS., D E C L A S S I F I C A T I O N ’D O W N G R A D I N O
S C H E D U L E

16 D I S T R I B U T I O N S T A T E M E N T (~ f ISIS R.porI)

Approve d ~~~~~~~~~~~~~~~~~~~~~~~ unlinuteL - . . .~.— ‘- -

~~ /
/ - /

~~
‘,//

~~ ~~~~~¶ 7 . DI S T R I B U T I O N S T A T E M E N T (of IS. .b.fr.~I .r,y.r.d I,, Stork 20 , Ii dIhf.r.., I from R.porl)

*
) ~ I ~

I S . S U P P L E M E N T A R Y N O T E S

IS. K E Y W O R D S (Co nti n~. or, r.v.r.. •*d. It n.r....ry ,d ld.n1I~~’ by biork r~~~,b.r)

Software Abstract interfaces
Software engineering Interfaces
Abstraction Program ming

-

~
. Embedded computer systems

~ 6. AB ~~7 RA C T (CentIn~.. on ,..-.r.5 aids It n.c....’y a,d ld.nhI?y by block n~a,bor)
-~~sThis repo rt desc ribes a procedure t I l t designing computer systems tha t are develope d specifI cally

4
to be a component of a more comp lex sys te l l i T w l si~ ii fican t c l Ia ta ~i c : I s t i s of such des ig . problems
are the following: the cort iput er syste m I m I t C r t , u . .t is determined by facto rs out side the control of the
computer system desirer , a n d the s p e c I t’i~~a t I l l I s of tha t interface are l ikely to change throughout the
life cycle of the system. The purpose of the procedur e descr ibed in this report is to r educe ‘~i~ intenan ce
coSts by means of a software organ iiat ion th a t insulates most of the pro grsms from changes in the
interface . The procedure is based on the syst emat i c compila t ion t an a~.SI4t f lp t i , IP i list. The assumption

(Cont inued) 7
DO ~~ 1473 CDI T I O W OP I NOV IS IS OBSOLETE

S’N ~‘ O 2 L F - O t4 -66Ot I ___

SE C U R I T Y C L A S S I F I C A T I O N OF T H I S P A G E (Iti sr 0.,. tn l.,.d)

L. .. ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -

- — --.- . — .~~~- -—~~ - .-—~~-- -.

S E C U R I T Y C L A S S I F I C A T I O N OF T H I S P A G E (W?y sn 0.1. Eni.r.d)

20. Abstract (Continued)

list describes those aspects of the interface that future users and other knowled geable persons consider
essential and therefore stable. Other aspects of the interface are ignored . An abstract interface is
designed on the basis of this assumption list. A specification of the abstract interface is used to procure
the m~ or components of t he system.

This report exp l ain s toe principles behind the procedure and i l lustrates Its use . The success of
the procedure is pri m ari ly limited by the ability of designers and fu ture users to compile an accurate
list of assumptions. A side benefit of the procedure is simp ler , better structured software . Successful
application of the procedure should result in both increase d reliability and reduced lift-cycle costs.

K
/

.
~~~~~~~~ -

SE C U R I T Y  C L A S S I F I C A T I O N  0F T H I S  P A G E I ’WIISn 0.1. EnI.r.d)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-

~~~~~~~~~~~~~~

..

~~~~~~~~~ 

.~~~~~~~~~ ..- . ~~~~~‘



~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~--. - - -

‘
~~

CONTENTS

INTRODUCTION . I

EXAMPLES 2
A Message •Forwar ding Station for an Existing Communication Network 2
Radar Data Analysis 3
Address-List Processors 3

APPLYING THE “INFORMATION HIDING PRINCIPLE ” WHEN EXTERNAL
INTERFACES MAY CHANGE

“ABSTRACT” INTERFACES 5
What is an Abstract ion ”
Why are Abstractions Useful ” 5
Wha t is an Interface ” 6
What is an Abstract Interface ” 6

A SIMPLE EXAMPLE: A SYSTEM TO PROCESS DATES 7
Compiling and Checking the List of Assumptions 7
Designing the Interface 9

SUMMARY OF THE PROPOSED MET h ODOLOGY 9

A LARGER EXAMPLE: A SYSTEM TO PROCESS MAILING LISTS 10

ON THE NEED FOR ASSUMPTIONS PIAT ARE NOT SHARED BY
ALL POSSIBLE INTERFACES 24

COMPLETING THE SYSTEM BY STEP’4~V I SE ADDITION OF ASSUMPTIONS 24

WHERE IS THE SEMANTIC SPECIFICATION ” 25

IMPLEMENTATION CONSIDERATIONS AND LANGUAGE LIMITATIONS 25

CONCLUDING REMARKS 29

REFERENCES 29

ACKNOWLEDGMENTS 30

ii i

- .
- 7~~~~_ . . .

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ -
~~~


USE OF ABSTRACT INTERFACES IN THE DEVELOPMENT
OF SOFTWARE FOR EMBEDDED COMPUTER SYSTEMS

INTRODUCT I ON

This report describes an approach to software design and procurement tha t should be
useful in the acquisit ion of software for embedded computer systems. We wil l refe r to a com-
puter system as embedded whenever it is specifically developed to func t ion as a component of a
s ignif icant ly larger system. This is in tended to d is t inguish embedded computer s~ stems from
computer systems that are developed as general mechanisms to be used in vaguely specified
applications. A “ general purpose ” operating system is an example of a nonembedded system .
the “message processors ” developed for use in communica t ion n c t ~~ I I r k s are good ex. impl es of
embedded systems.

Al though we cannot precisely del ineate embedded and nonembedded systems , the sys-
tems wi th which we are concerned have the fol lowing character is t ics :

• The designer of the embedded computer system is not free to J.~fIne the interfa c to
his system. He is required to meet an interface tha t was de te rmined by factors beyond his
control. For example , he cannot define the i n p u t language or specify the character set to be
used.

• The constraints placed on the computer system by the interface requirements are str ic t
and often quite a rb i t ra ry . The external system is not tolerant of devia t ion s~ a system may
come very close to meet ing the requi rements and sti l l require ver y ex tens ive modifications be-
fore it can be used.

• The interface often changes dur ing the period in wh ich the computer system is
developed. The system in which the computer syslem is embedded may be being developed at
the same t ime , or it may be undergoing evolut ionary changes whi le in use. Because the com-
puter system is only one of many components , the effects of any changes on the computer sys-
tem are given relat ively l i l t l e consideration.

• Often there are several s imilar systems with similar requi rements , but the interface re-
quirements are so strict tha t it is not practical to modify one computer system to replace the
other. This may happen because of evolut ionary changes or because two different contractors
have “ total system ” responsibili ty , In such cases, there is a great deal of duplicated effort.

This description of an embedded system is somewhat broader than the standard mi l i t a ry
def in i t ion of “embedded. ” We include other systems which have many of the same problems.
Many of the statements we make hold for a broader class of systems , but the problems are
more acute in embedded systems.

Ma nusc r t p i submit ted Apr i l 13 . 1977

-
~~~~~~~~~~~~~ 

_~. T ’
~~: 

. - 
. -~~~~



DAVID L. PARNAS

These cnaracteristics place those who must write software specifications in a dilemma
it desc ribed by the following statements:

• Those who will produce the software must be provided with a precise descripti on of
the requirements that the software must meet. Without a precise specification , the cha nces
that the p roduct will be statisfactor y are low; without  specifications , one must depend on the
good will of the software develope r , beca use one cannot prove that a product is defective.

• The details of the interface must be considered unknown .  It is almost certain that  the
requirements that one could describe in a contract will  not be the same as the re quirements
that m ust be satisfied when the system is used.

• Systems de~eloped to meet old interfaces are often surprisingly hard to adapt to the
cu rrent interface. Many early design decisions have been based on information which is no
l onger valid [I] . Finding those portions of the code that must be changed is difficult , time con-
su ming , and expensive.

• Fi nding an al ternative source of supply for changes is un l ike l y .  Knowledge of imple-
mentation details is needed to make changes. Competition does not hold the price down.

The subject of this report is one way to escape from this  di lemma. This report proposes
an organization of the software that  results in divorcing the majority of the code from the ti ght
constraints.

EXAMPLES

To illustrate the problem , we describe three examples of embedded computer systems ,
emphasizing the reasons that the interfaces can be expected to change.

A Message-Forwarding Station for an
Existin g Communication Network

A not unusual  application of a computer is to automate the work of the human operator
at a relay point in a communicat ions system. The ope rator must observe incoming messages
and detect those that require action on his part. In addition to delivering messages to addres-
sees. he must keep logs and assist in the preparation and transmission of outgoing messages.
Man y communication networks have complex coventions for ident i fy ing and routing messages.
The conve nt ions  are especially complex if the channels  in use may be noisy. Often the con-
ventions have evolved to a poi nt  where they appear completely arbi trary and capricious.
Neve rtheless the conventions must be strictly observed or messages may go astray. If a hu-
man operator at one station is replaced by a computer , th e system conventions will not change.
The computer  will  have to meet the same interface as the man did. Most improvements in
rout ing convent ions , etc., will  be mad e to increase communicat ion effectiveness (priority
sche m es , etc. ) . not to make programming easier. Although the functions to be performed will
not cha nge much , the i nterface can be expected to change repeatedly both dur ing the program-
ming  and after the system becomes operational.

2

_ _   
- - -~~~~~~~~~~~ -~~~~~~~~~~ ~~~~____ .t 

~~~- —


N R L REPORT 8047

Radar Data Analysis

‘it Computers are often used to process data obtained from radar un i t s to prepare displays
for h u m a n operators and detect signiflcan l events. The re quiremen l s to be met by the comput-
er system are determined primari l y by

• physical laws (propagation characteristics , grav i ty , air resistance) ,

• radar and associated communicat ions technology,

• traffic conventions (such as minimum saf e disl an ces) ,

• huma n characteristics (these are man-mach ine systems) , and

• display technology.
It is si gnif icant that “computer character is t ics ” is not in this list of de t e rmin ing factors~ the
computer system is expected to adapt to an interface constrained by these factors , not vice ver-
sa. Although the physical laws can be assumed to stay cons tant , the other factors can and do
change .* Improvements in radar technolog y, traffic pa t terns , etc. wil l not be renounced in ord-
er to save the cost of comp~1ter system revision .

Address-List Processors

A somewhat less obvious example of an embedded system is a system to process address
lists stored on tapes or other files . Postal-system conventions determ ine the addressing con-
ventions. The interface convent ions are not quite as strict or arb i t ra r y as in the above exam-
ples , but they must nonetheless be observed. One can easily imagine the reaction of a U.S.
postman to a letter addressed according to the German convent ion : city before street . zip code
before c i ty , house number after street. Our postal system would a t tem pt to in te rpre t the house
number as a zip code , the street name as a town , the town name as a street name , and the zip
code as a house number . Moreover the convent ions change. A change in the German system
(to place street before town) was recen t ly announced. Since address lists are often purchased
from a variety of sources , there are many i n p u t formats.

APPLYING THE 1NFORMA TION HIDiNG PRINCIPLE
WHEN EXTERNAL INTERFACES MAY CHANGE

References I through 3 have introduced a guideline for use in m a k i n g the early design
decisions in software desi gn — parti cularly those decisions that determine the decomposition of
the system into components for independent design (and later independent modification) .
This has been called the information hidi ng pr inc ip le . Essentials of the procedure suggested are
the following:

I . I den t i fy a list of design decisions for which change cannot be ruled out (data s t ruc ture ,
a lgor i thms , etc.) .

Some reade rs m~~ I~hJe~~I to the stat emeni ihal human character ist ics ” will change Although human beings as a class
ma~ stA y the s.Ime . It is not infrequent to replace one cla ,s of opera tors with another (for esam ple , to replacr college
educated engineers with spec ’alh trained technicians) Further , our understanding of the best way to communicate
with human s may Im prose . and thI s Is e ffecil’.ely the same as a change in the characteristi cs of the operator

L ~~~~~~~
—

.- .
.

-
~~~~~

. 

~~~~~~~~~~~~~~~~~~~~~ 

~

—--.- ~~~~~~ “ - ---- ~~~~~~.

_ _ _ _ _

--

~~~~~

-- --

~~~~~~~‘

D A V I D L. P A R N A S

2. Make each design decision the “secret ” of one module. In other words , the programs
that cannot be coded wi thout knowledge of this decision comprise a module. No program is in
two such modules.

3. Design the module interface. The interface consists of the “subprograms ” needed by
the module user in order to make use of the module ’s data structures and algorithms without
knowing the design decision that is being hidden. This interface is so designed tha t it can be
kept unchanged even if the data structures or algori thm must be revised. The set of programs
is kept m i n i m a l in the sense tha t only those that cannot be efficiently performed wi thout direct
access to in te rna l data are in the module. Most of the tasks tha t require the data are performed
using the interface funct ions.

Readers who are encounter ing this idea for the first t ime should read Refs. 2 through 4
before con t inu ing .

The informat ion h id ing principle was developed and presented as a means of reducing
the cost of changes in internal design . Here external aspects are l ikely to change. The infor-
mation hiding pr inc ip le suggests a system structure in which those aspects of the external in-
terf ace tha t are l ikely to change are hidden from the bulk of the system.

Such a system would have a s t ruc ture such as tha t shown in Fig. 1. The large box
represents those program s whose funct ion is not dependent on volati le details of the interface.
The small box has the changeable aspect of the world as its “secret. ” The designer can now
design the interface to the large box relat ively free of the constraints associated wi th embedded
systems. Diagrams such as Fig. 1 are much easier to draw than they are to realize. We have
not yet demonstrated that such an organization is feasible ~ we have not shown how to design
the system. We have only reformulated the problem.

APPLICAT I ONS
PACKAGE

1 ug I — Structure of a system formulated according to the
t nfonmition hiding principle

I N T E R F A C E
PROGRAMS

~~~ ~~~~~~~~~~~~~~~ —------- -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
... - ,-~~~ -_-.-

N R L RE PORT 8047

Our new formulation allows us to propose the following procedure:
‘Is

1. Specify the ~interna l” interface , that is , the interface between the l i t t l e box and the
large box.

2. Obtain an implementat ion of the large box , The software producer considers the large
box to be the whole system.

3. Near completion of the large box (or whenever the actual interface is really known)
specify the small box. The software ir the small box is constrained to use only the specified
interface to the large box. It is not allowed to modify code or refer to data Structures that are
part of the large box.

4. Future changes in the external interface should result in changes to the small box but
not the large box.

Again we have reformulated the problem but not solved it . A skeptic may well ask how
we can make 4 come true . We have not shown why such an ar t i f i c al ly derived interface is
preferable to our best guess about the actual interface. That is the subject of the nex t three
main sections.

“ABSTRACT ’ INTERFACES

What Is an Abstraction?

In recent years the word “ abstract ” has become one of the buzzwords of the computer
field. In some discussions it is used euphemis t ica l ly to mean vague , un rea l i s t i c , or
insuff ic ien t ly specific. In others it is used to mean formal , h igh l y mathemat ica l , etc. In th i s re-
port we refe r to something as an abs r ra et i im if it represents several actual objects but is disasso-
ciated from any specific object.

ft is the many-to-one re la t ionsh ip tha t is cr i t ica l . For example , d i f fe ren l i a l equat ions are
one mathemat ica l abstraction that can represent mans ’ real systems as diverse as RLC circui ts
and collections of springs and weights . An abstraction represents some aspects of the system
but not all. Consider a map as an abstrac tion represent ing a road network . This graph may
represent the lengths of the roads , but not the type of pavement or colors. Thus , one such
graph could repre sent many di f ferent road systems , inc lud ing both black or green , asphal t or
concrete. The common aspects of the road systems (the lengths of the various road segments)
are represented; their differences are not .

Why are Abstractions Useful?

If all properties of the abstract system correspond to properties of the real sy s tem , then
we can learn about the real system by stud ying the abst ract ion. E v e r y t h i n g tha t is t rue about
the abstraction corresponds to some fact about the real sy stem , a l though the reverse need not
be true. The abstraction is usual ly easier to s tudy. It i t far easier to find a good route by
s tudy ing a road map than by exp lo r ing the road ne twork i tself . Abs t rac t ions are s impler and
more s imply described than the actual objects. With the proper abstractions , we ignore all of

5

- ~~~~~~~~~~~~~ .~~~~~~ ..~~~
-

- — , , g ~~~
-

~~~~~~~~~~~~~ ~
__ ... . .-~~



. -—
~ — , , -~ ,- ---. .,— - .- --.- - .--.---~ -----

D. L. P A R N A S

the  details  tha t  are not relevant  to our analysis.  More impor tan t , any result  tha t  we obtain by
s tudy ing  the  abstraction can be reused! It can be applied to other systems that  the abstraction

‘it represents. For example , mathemat ica l  results obtained by s tudy ing  the equations representing
electrical c i rcui ts  were later applied to the study of electrical motor systems. Directed graphs
provide another  example.  An incredible  variety of problems have been solved by representing
the system as a graph and a p p l y i n g  w e l l - k n o w n  a lgor i thms  to find the shortest path , pr ime cy-
d e s , etc.

What is an Interfa ce?

It is often assumed that the interface between two software components may be
described by describing the  format  of the  informat ion  tha t  they  exchange .  This  is a gross
o~ersi mp I i f i ca t ion which  has resulted in a great many  expens ive  errors. A complete description
of the  interface must  inc lude  a s ta tement  of all of the  assumpt ions  tha t  each component  makes
about the other [31. A n y t h i n g  less is not a complete descr ipt ion of the s~a~ s ( in tended and
u n i n t e n d e d )  tha t  the  two components  migh t  in te rac t .  The lis t  of assumpt ions  usual l y includes
an expl ic i t  description of the  intended in te ra c t i ons ~ u n i n t e n t i o n a l  in te rac t ions  can occur if one
of the  components  violates an assumpt ion  tha t  the  o ther  makes.

\ description of the formats used for in fo rma t ion  exchange  does not describe all  of the
assumptions .  Assumpt ions  about t he  m e a n i n g  of the  in format ion , resource usage , etc. must
also be described. In fact , one can describe an interface w i t h o u t  descr ib ing the  formats  of the
informat ion  exchanged .  One can def ine  a set of programs to be used for inse r t ing  and access-
ing i n fo rma t ion .  One t h e n  describes the  s a ~ t h a t  these programs i n f l u e n c e  each other s
behavior .  This  can be done w i t h o u t  descr ib ing  the  data s t r u c t u r e  t h a t  is used 141. The
def in i t ion  of these procedures or programs is a part  of the  descr ipt ion of the  interface between
any components  tha t  use the  programs to c o m m u n i c a t e .  A descript ion of the  formats used h~
those func t ions  need not be included , because n e i t h e r  component  makes any assumpt ions
about the  format .  We repeat: an in ter face  descript ion is a decr ip t ion of a set of assumpt ions .
The description of an interface between several programs is not  complete unless  all  of the  as-
sumpt ions  tha t  the programs make about  each o ther  are inc luded .

What  is an Abstract Interface?

We use the  phrase abstract interface to refer to a set of a ssum pt ions  tha t  represents more
t h a n  one possible interface.  An abstract in terface  wi l l  model some propert ies  of those inter-
faces tha t  it represents but  not a l l .  It wi l l  describe t h e i r  common aspects whi le  h id ing  (or ig-
nor ing )  the  differences. It wi l l  noI generall y be suf f ic ien t  to permi t  development  of a work ing
system.

As wi th  any valid abstract ion , all  facts tha t  are t rue  of the  abstract interface are t rue  of
any  one of the  ac tua l  in te r faces  t h a t  it r epresent s  It follows t h a t  any  prog r am tha t  can be
demonst ra ted  to be correct us ing  only t he  i n fo rma t ion  about  the  abstract in te r face  w i l l  be
correct (usable )  for wig of the  real interfaces represented by the  abst ract  in terface.

However the  in fo rmat ion  in the  abstract  in terface , being restricted to tha t  in fo rmat ion
tha t  is t rue  for many  d is t inc t  actual  interfaces , is not general ly  suff ic ient  for the  w r i t i n g  of a
complete program. An~ programs t h a t  we wr i t e  and verify , us ing  oti ly t ha t  i n fo rmat ion  impl ied

6

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
.
~

:. ,
-


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~r .

~ RL REPORT 8047

by the  description of the  abstract interface , wi l l  not be incorrect .  They wil l  how ever assume
‘Is the ava i lab i l i ty  of programs that  cannot  be wr i t t en  wi t h - ’u t  addi t ional  i n fo rma t ion .  These pro-

grams are being wr i t t en  by “ stepwise re f inement ” [5 ,61. “I h e y  can be completed by adding pro-
grams that  use the addit ional  information specific to the actual interface and not t rue for al/ in-
terfaces represented by the abstract interface.  Those programs cons t i t u t e  :he small  box in Fig.

In s u m m a r y ,  the  procedure tha t  we are discussing can be formula ted  in ye t  ano the r  ~s a y

I .  Specify an abstract  interface embodying all the  i n fo rma t ion  shared by all of the  possi-
ble actual  interfaces .

2. Procure programs to meet th i s  abstract interface (the  large box of Fig. l ) ~

3. Procure add i t iona l  programs in order to meet t he  ac tual  in ter face  ( the  small  box ) .
A change in the  actual  i n t e r f ace  tha t  does not violate  assumpt ions  made in step I can be made
w i t h o u t  chang ing  the  programs in 2. Step 3 must  be repeated wheneve r  such changes occur.

A SIMPLE EXAMPLE: A SY STEM IC) PROCESS DATES

The procedure be ing  discussed can be i l l u s t r a t ed  by cons ider ing  the  problem of w r i t i n g  a
program tha t  wi l l  read in a date from some i n p u t  media , compute ,  and p r i n t  out the  date 3
weeks from the i n p u t  da le.  There is no s tandard format  for represen t ing  dates. Among  th e
many ways  of r e p r e s e n t i n g  dates are:

February 10 , 194 1 (mon th  da~ in m o n t h . y e a r ) .
10 February  194 1 (day in m o n t h  m o n t h  year ) .
10 February  41 (day in m o n t h  n , o n t h  last two digi t s  of year ) .
10.2 .194 1 (day in mo n t h . i n t ege r  encoded m o n t h . y e a r ) ,
2/10/1941 ( in t ege r  encoded m o n t h / d a y  in m o n t h / y e a r ) ,
41 2.10 (last two digi ts  of year . in t eger  encoded rnon th . da v  in m o n t h ) ,
41 February  10 (last two digi ts  of year m o n t h  day in m o n t h ) .
41 ,4 1 (day in year , last two digi ts  of vear ~.

Not on ly  are there  mans  formats , but  it  is impossible  to look at a date and be certain which
format  it is i n .  Consider 10 . 1 1 . 1 2  or 12 November  10.

In spi te  of t h e  v a r i e t ~ u i t  possible i n p u t  formats , the a lgo r i t hm for ca l cu la t ing  the  ne~
date need not change  if the  format changes. It  mus t  be possible to organize the  program as
suggested by Fig. 1.

Compiling and Checking the List of Assumptions

The first step toward d e f i n i n g  the  abstract  i n t e r f a c e  ) t h c  in ter face  between the  two boxes
in Fig. I )  is to l i s t  assumptions  tha t  we may safe l~ make  about  all possible i n p u t  formats:

• It wi l l  be possible to ca lcu la te  the  year of the  i n p u t  date .  If I he  two - d ig i t  encoding of
lhe year is used , there  wil l  be no doubt  about  wh ich  c e n t u r y  is i n t e n d e d .  ( I f  anyone  is foolish
enough to ~io late  th i s  a s sumpt ion , the so f tw , ire  designer  c a n n o t  he lp  h i m . )

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.

—--—- ‘-- ‘-— — - ——. ‘—-,
~~~~~~

‘ “ ‘
~
“ - —

F D. I.

• it wi l l  be possible to calculate  t he  month  of th e  i n p u t  date.
‘Is

• It ss i l l  be possible to c a l cu l a t e  t he  day of mon th  of the  i n p u t  date.
We have used the  phrase “ it w i l l  be possible to ca lcu la te ” r a the r  t h a n  “ the  i n p u t  wi l l  conta in ”
so that  our assumpt ions  w i l l  be val id even it ’ one changes  to the  use of a Ju l i an  date (41 , 1941) ,
or to some cryp t i c  encoding i f  t he  date.

The “l is t  of assumpt ions ” is i n t ended  to be a comple te  list  of all  t ha t  w e  need to know
about  the  i n t e r f a c e ’ in order to ss r i l e  t he  b u l k  ui f  t he  code for t he  sys tem.  Such a list should
be checked to make sure t h a t  it h a s  n e i t h e r  C\cess in fo rma t i on  nor i n su f f i c i en t  i n f o r m a t i o n .
Excess in fo rmat ion  is i n fo rmat ion  tha t  is e i t he r  ( a )  not needed to design the  system or (b) not
k n o w n  at t h i s  t ime.  There is i n s u f f i c i e n t  i n t i ’ r m a i i o n  if some major por t i on  of the  system can-
not be imp lemen ted  w i t h o u t  m a k i n g  add i t iona l  a s sumpt ions .

It is pos sible t h a t  a list of a s sun ip t ions  has i n s u f f i c i e n t  i n fo rma t ion  because,  were the  in-
f o r m a t i o n  provided , it would  be type -b  excess  i n fo rma t ion . [r ider these c i rcumstances  t h e  in-
format ion  must  be designated is a parameter  of the  design The design sho u ld  be carried as far
as possible in t e rms  of t h i s  parameter  and w i t h o u t  a s suming  a specific s a l u e  fot  i t

If w e  v i e w  such an assumpt ion  list  in t h i s  l i g h t , i nnocen t  look ing  s t a tements  w i l l  be
found to have  r a the r  t a r - r e a c h i n g  impl i ca t ions .  Consid er the  fo l lowing  example :

The message wi/ i  contain a strung that i .s a unique u/t ’nt, f ier i i !  the message. ”
The imp l i ca t i ons  of i n c l u d i n g  t h i s  s t a t e m e n t  in an assumpt ion  list  are t he  fol lowing:

• In all  possible formats  it w i l l  be possible to find a s t r i ng  tha t  is th e un ique  iden t i f i e r
m e n t i o n e d .

• The bu lk  of the  system ’s code can be wr i t t en  w i t h o u t  k n o w i n g  how to f ind tha t  s t r ing
in the data.

• The hu lk  ot the  svsten i ’s code can be wr i t t en  w i t h o u t  k n o w i n g  any  more in fo rmat ion
about the  s t r ing  ) i t s  l eng th , tha t  it is an in teger , t ha t  H never  appears , or w h a t e v e r ) .  i~/

’ we ,c i i , u ’
no in /o rmat uon a/t out an item r’,su ’ept that it i s  a strung, we are stating that the item ‘s structure u.s unim-
portant.

• The system wi l l  neve r  need to d i s t i ngu i sh  between two messages wi th  the  same
iden t i f i e r .  Al l  code may be w r i t t e n  assuming  t h a t  the  iden t i f i e r s  never repeat ( tha t  a message
is never sent twice )

• W i t h o u t  the  assumpt ion  of t he  exis tence  of such a u n i q u e  iden t i f ie r . the  bu lk  of the
sy ste m ’s code could not be w r i t t e n .

It  is impor tan t  tha t  the  reviewers of such s ta tements  recognize tha t  the  assumpt ion list
wi l l  be used to draw up a specif icat ion t h a t  w i l l  be g iven to developers instead f in format ion

‘The characterist ics of the calendar (such us . 30 d.ri s haIti September 1 are not considered part u i  thi s interface If
such assun ipt ir lns are I i kc i s  ui change, ~ c ‘~ iil hide them in a separate modute .

8

1 ’  

_ _ _ _

_
_ _ _  

- - - - - , 
_ _  -.  

_ _ _ _ _ _

~~~~~. ~~~~~~~~~~ - _—
~~~~~~~~~~~~~~~~

- A - -~ .~~~.



— — - — ----—-—----~~~~~~
---- - —

~~
-- - - - - - - - - —-----

“ R I .  R l P t ) R 1  8i ) 4 ~

about the  actual  i n t e r t ’ace. I n s u f f i c i e n t  i n fo rmat ion  in the  assumpt ion  list w i l l  mean tha t  m i -
por tan t  f unc t i ons  wil l  not be imp lemented .  Excessive information means that  the  system

‘it m i g h t  be unnecessar i l y  res t r ic ted in i ts  app l icab i l i ty .  I l i g h l ~ cri t ical , careful  review is essent ia l .

Designing the Interface

The four a s sumpt ions  about  dates above allow us to assume the  ab i l i t y  to i m p l e m e n t
in teger -va lued  i n p u t  procedures . Y E A R ,  MONTH , and DAY tha t  r e tu rn  the  year , m o n t h  of
year , and day of mon th . respecti s clv . A descr ipt ion of these in teger  procedures and the assurnp-
tuons ahom their meaning cons t i tu t e s  t he  abstract  in ter fac e  All  programs in t he  large box of Fig.
I can he w r i t t e n  in te rms of those proc edures If a new ac tua l  in terface  is encoun te red , a new
i m p l e m e n t a t i o n  of those procedures w i l t  be needed. } I u u w e s e r , as long as our assumpt ions
about ‘he in put  remain  valid , the  remainder  of the  program need not be changed.

S U M M A R Y  OF THE PROPOSED ME ’rHODO L O(;v

The date-processing example  given in the  preceding  section , t h o u g h  ex t remely  s imple , il-
lus t ra tes  the  main s teps  of the  methodolog y tha t  w e  are desc r ib ing .  The key to th i s  method is
a depar ture  from the  s tandard view of an interface as a set of formats  for data commur ica t ion .
Instead we consider an in te r face  to be defined by the  set of assumpt ions  t h a t  the  components
make about each other.  Recogn iz ing  t h a t  an abs t rac t ion is s o m e t h i n g  t h a t  represents many  in-
stances , we base the  design of an abstract  in ter face  on tha t  subset of the  assumptions
represented in the  var ious ac tua l  in te r t ’aces tha t  is t rue  for all ac tual  interfaces.  Usua l l y , the
various possible in ter faces  have too l i t t l e  in common to allow complete programs to be wr i t t en
on the  basis of these assumpt ions  The assumpt ions  are su f f i c i en t  to allow us to describe the
syntax and sernan’iics of a set of f u n c t i o n s  that  can be imp l emer ’ted  us ing  addi t ional  informa-
tion about  an actual  in te r face .  A p p l i c a t i o n  programs w r i t t e n  in terms of these func t ions  are
valid and usable for all  i n p u t  format s  tha t  satisf ~’ t he  stated assumpt ions .  The programs wr i t t en
to i m p l e m e n t  these i n p u t  f u n c t i o n s  are specific to the  pa r t i cu l a r  in terface  and must  be changed
w h e n e v e r  t he  ac tual  i n p u t  fo rmat  changes.

When ar embedded comp uter  system is procured and t h e  ac tual  interface to the  comput-
er system is not k n o w n . the  major purchase should be a system tha t  meets only  the  abstract
interface.  The contractor  should be given precise specifications for the  abstract  in terfac e  and
should be required to bu i ld  a sy st em tha t  wi l l  work us ing  any  valid imp lemen ta t ions  of the
func t ions  suppl ied  to h im.  In a typica l  system most of the code wi l l  be in t ha t  port ion of the
system tha t  assumes the a v a i l a b i l i t y  of those func t i ons ~ the  programs needed to imp lemen t  the
in ter face  f u n c t i o n s  are smal l .  Procurement  of these addi t ional  programs can usual ly  be delayed
u n t i l  the  main part of the  system is almost ready to be used. At t h i s  po in t , one usual ly  knows
enough about the  actual  interface to w r i t e  a comple te  specification . Since precise specif icat ions
of both the  actual  and the  abstract  in te r faces  are avai lable , the  coding does not require
knowledge of the i n t e r n a l  s t ruc tu re  of the  remainder  of the  system.  Compet i t ive  procurement
may be used.

The success of ’ t h i s  method depends on

• our a b i l i t y  to a n t i c i p a t e  changes or var ia t ions  su f f i c i en t ly  we l l  t ha t  the  assumpt ions
made in d e f i n i n g  the  abstract  in te r face  p ro se  valid for the  ac tua l  in te r face  (the oracle assump-
tion ) and

9

L ~~~~~~~~~~~~ — ‘~~~~~~~~ ‘~~~~~~~ - 

.



D . I  P A R N A S

‘~~ • the various possible interfaces having enough in common so that  the  addit ional  pro-
grams needed to meet th e actual  interface are s igni f icant ly  smaller than the  remainder  of th e
system (the big-large-box a ssumpt ion ) ,
If these condi t ions  do not hold , the  methodology described may be of l i t t l e  he lp .

The use of abstract  interfaces does not g ive the  implemen to r  of th e  large box more free-
dom than  a convent iona l  approach ; it cons t ra ins  h im more t i g h t l y .  He is prevented  from mak-
ing assumptions about the  actual  format .  E v e n  if the  same contractor even t ua l ly  makes both
parts , we are forcing h im to make his  system bet te r  s t ruc tured by def in ing  th is  “ in te rna l ”  inter-
face,

A LARGER EXAMPLE: A SYSTEM TO PROCESS MAILING LISTS

This section demonstra tes  the  app l ica t ion  of abstract  in terfaces  on a more rea l t s t ic  exam-
ple. The specifications and design were developed b y John Gut t ag ,  Barbara Trombka , John
Shore , David Weiss , and the a u t h o r .

Many organizat ions ma in t a in  l i s t s  of addresses. In s imple  appl ica t ions  th e  whole  list  is
used to generate a set of ma i l ing  labels or “personal ized ” le t ters .  Other  appl ica t ions  invo lv e  the
selection of addresses of peopl e who  are more l ike ly  to be in teres ted  in th e  c o n t e n t s  of ‘.he
mai l ing .  For example , an adver t iser  who  wish ed to offe r a ne w magaz ine  called Tax Loopholes .
migh t  wan t  to select those addresses t h a t  ind ica te  a medical  degree. Other advert isers  m i g h t
wan t  to select all entries wi th in  a certai n gecsgraphis.’ ar ea 01 to select those addresses wi th
specific first or last names.

The lists themselves  are obtained from many  source s  and are genera l ly  delivered on a
medium such as magne t i c  tape in a format  t h a t  corresponds closely to the ac t ual  p r i n t i n g  for-
mat of the  label.  Lists  obtain ed from d i f fe ren t  sources w i l l  not u sua l l ~ be in the  same format.

A ma i l i ng - l i s t  processing system is an example  of an embedded system (one subject to
arb i t r a r i ly  chang ing  cons t ra in t s ) , a lbe i t  one in w h i c h  t he  cons t ra in t s  on the  system are not as
str ict  as in some other  s i tua t ions .  The i n p u t  format  is de t e rmined  by the  systems tha t  pro-
duced the  tapes; the  ou tpu t  form at  is considerab ly  cons t ra ined  by the  r equi rements  of the po-
stal systems in wh ich  the  mail  wi l l  be deposited.

In this  example  we assume tha t  we are deal ing wi th  m a i l i n g  lists in which  all of the ad-
dresses are of persons w i t h i n  gov e rnmen t  organiza t ions .  E s e n  w i t h  th i s  a ssumption , we cannot
assume the  i n p u t  or ou tpu t  formats  to be k n o w n .  Figures 2 and 3 show’ two possible formats
for addresses — the  formats  are defined by “ fil l  in the  b l anks ” forms. Were we to pr ocure a
large set of programs to process address l i s t s , we  would wan t  to reduce the l ike l ihood of major
changes  in the  programs be ing  caused by predic table ’ changes  in the  i n p u t  or ou tpu t  format.

Tii apply our a b s t r a c t  in t e r face  methodology,  we must  l i s t  those properties of the  ad-
dresses to be processed t h a t  can be expec ted  to remain t r u e .  This list  of assumpt ions  would
then  be c i rcula ted  to t i l l  concerned for approval  or rebu t ta l .  For our examp le an in t i a l  li st of
assumpt ions  m i g h t  be as sh ow n in Fig. 4 .

‘In most s i tuat ion s ,u ,“ 1 f i l l ,  u h , I f  v ,.’ is (inc that the designer had no good reason to consider impossible

10

— — . - . .  ‘-- —
~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ —_-_~~ ——— -‘ ----. .

~~~.—



s K I  Rf P t ) K l 10)4 ”

[1111 11 ~ f i ~1-1-
-i~ I~ t I I Till

tilt . (0 $ . ,  . aCt N~~~
MC. ,  Dr. • CA PT )

f I l l  I i l i i I l l l I I I i i  Ff1
CLY.n II~~~ e t r i r et . H1441. •~~~ e~i

l ! l 1 l 1 l H l l l H T I H ~~~~Irsne h or Cod.

I I I I I I I I I I I I I 1 1 1 1 1 1 1
Cc .nd or Activity

I I  1 1 1 1 1 !  1 1 I I  [1
St r. .t edd ies. or P. O. Ion

I i i i  I I I I i  I ~~~~~~~~City

I H I l l  LI
Stat . Z i p ,  APO , or FF0

If C iv i lia n .aploy .e , enter ,S’ien.i (cant ,*,~~,r t ‘ f l u ,  r 00) :

I f  ~~~~~mr of ail i ta ry , en t er  b r a i  i ~‘ i ..rvt,, [ J 1 ’ f l
I’ ig. 2 Possible i,,ruii.it for add resses

FF1 TT1TITT T . I I I  LIII I I I  Ii
Co and or A ctivity

1 1 1  I1LI I 1 1 1 1 1 1 1  [ I I  I’TI
lt r..t C T P.O. I~~

I i  l i i i  1 1 1 1 1  ( I I I  t i l l
City

( T i l l  1 1 1
t at , Zip, A~~ or ?~~

~
l I I 1 I 1 i i  l i i  11] 1 1 1 1 1 1 1 1 1  1 I
ii. Gin.. 1 s  t FlrI t , Midd le N~~~ e)

1 1 1 1 1 1 1 1  I I I  If ! !  I
I.a.t N.~~

I I I I I I I I I I I I I I I I I I 1 [1
lrau ~~h or Cod.

i f civiitan ~~~~ioy.., enter cS’ l.nei t io n t rac tor .  ent .r 00) :

If ..~~.r of .iitt.ry , en t e r  br.neh n f ea rv i C . :  [ I I I~1
1 i~ S — t’ossih Ic format t i’r add rt’’,sc~

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~
-
~~~~

- , .
~~~~~

- .-
~~~~~~- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I) L l’ .\RN ’ ,s

The following items of information wi l l  be contained in
addresses and can be identified by analysis of the input
d~uta; this information is the only information that wi lt
be relevant for our computer programs:

• Last name
• First name
• Organiza tion

• Street address
• City, state and zip code (single l ine with a comma between city and state)

I~ ig 4 — 1 pic.ul initial l u s t u,) properties that are .ussunied lu remain true

We would hope tha t  after such a list  of assumptions was circulated , the  fol lowing objec-
tions would be noted:

• Middle names rna~ also be relevant  (for example , to d i s t inguish  John Lyle Smith from
John David S m i t h ) .

• An j dent i f i e r  of an in t e rna l  mail  post or other in t e rna l  organizat ional  di~ ision (such as ,
Code 5403. In format ion  Systems Branch , etc. ) may be re levant  to some of the  programs.

• A t i t le  such as Capt , Prof , Dr . Maj , etc. may  be inc luded  in the  address and be relevant
for some purposes . It is important  tha t  name and t i t le  not be confused.

• Not all addresses contain  the  ci t y  and state and zip code in the s ing le - l ine  format as
described. Certain i n p u t  data may contain the  zip code at some other point  in the address.
Fur ther , in the  addresses of mi l i t a ry  un i t s  overseas (APO N E W  YORK 091 75 ) , the  format  is
not valid at al l .  Even if one is w i l l i n g  to construe .APO as a c i ty  in New York , the  comma is
not present .

• Certain organiza t ions  demand tha t  c iv i l ian  employees  include the i r  c i s  1 service grade ,
and this  informat ion may also be re levant  for some of the  processing.

• Some data sets may contain the b ranch  of service for members  of the  m i l i t a r y .  This
information is necessary in some appl ica t ions  because the t i t l e  has different  s ignif icance in
di f ferent  services. (Compare the  t r ea tmen t  given Marine  captains wi th  that  given Na ’.~ cap-
tains. )

• M a n s  of the  above items wil l  often be absent from an address.

These errors in Fig. 4 are simply indicat ions  tha t  the addresses examined in d ra wing  up
the list of assumptions had some properties that  were not common to all the  addresses tha t
might  be encountered.  The exceptions migh t  even have been known to the person who drew
up the list , bu t  he overlooked them.  One purpose of compil ing a list of assumptions and ob-
ta in ing  the approval of others in the organization is to increase our chance of f i n d i n g  such
oversights at an earl y stage, before they  can do much harm.

A more realistic list of assumptions is shown in Fig. 5. These assumptions iden t i f y  the
informat ion  tha t  may be found in an address but  make absolutely no s ta tement  about  the posi-
tion w i t h i n  the address at wh ich  it may be found.  A program tha t  could be demonstrated to be

12

.2 . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ...—. — - . . .~‘ ~~. - : L. . ~~~~~~~~~~~
=

~
-
~~

--- ----°-- ‘ , ..



-~~~ ~~~~~~~~ --

NRL REPORT 8047

The following items of information will be found in
the addresses to be processed and constitute the only
items of relevance to the application programs:

• Last name
• Given names (first name and possible middle names)
• Organization (Command or Activity )
• Internal identifier (Branch or Code) Fig. 5 — L ist of assumptions that is

• Street address or P.O. box more realistic than the list in Fig. 4
• City or mail unit identifier
• State
• Zip code
• Title
• Branch of service
• GS grade

Each of the above will be strings Qf character s in the
standard ANSI al phabet, and each of the above may be
empty or blank.

correct making only the assumptions given in Fig. 5 could be used on an address file that  con-
tained addresses in scrambled formats. The assumptions are that  the  informat ion  can be found
and tha t  no other information w ill be needed; they do not tell us how to find the information
or put any constraints on possible values.

The assumptions in Fig. 5 tell us tha t , if we have a file of addresses sequentially num-
bered , we can implement  funct ions  such as (a) FETTIT ( i ) ,  which  is a str ing-valued function
that  fetches the tit le to be found in the i th address in the file , and (b ) SETTIT(i ,s) , where  i
refers to an address in the file and s is a s t r ing .  Call ing SETTIT(i ,s) has the effect that  after-
ward FETTIT will  return the string s.

These assumptions are not very strong, but  they allow one to wri te  any  application pro-
grams that  do not need to make assumptions about the  lengths  of the  strings , the possible con-
tents of the strings , etc. An example would be a program that  types out individualized form
letters (“Dear Capt. Smith , We were pleased to learn that  you have achieved the rank of Capt
because now we can offe r you... ” ) .

The assumptions enable us to define the abstract interface among all programs to be writ-
ten to process the address lists by the  informal  specifications given in Fig. 6 or the formal
specifications given in Fig. 7 . Gut tag (7] is a good introduction to reading the specifications in
F ig. 7 .

‘For man> programs one would make additional assumptions For example, one might assume that if a military rank is
giv en . iPten branch of serv ice will be supplied, and that if a OS grade is provided , branch of service :~nd a military rank
w i l t  not be given Such assumptions should be stated espl ic it ly, because programs that make them might function un~
corr ectl y if the address file contains the address of a retired officer who still uses Pius title and branch of sers ice but
now holds a c i v i l  service job

13

L ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .



I) L PARNAS

FUNCTION: AQ DCITY ICTR ,STR) MODULE: A SM‘1~ INPUT PARAM ETERS:

N,m. Type Description

CTR Integer Number of address being accessed

STR String Strung to be stored as new CITY
field of address

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores strung STR in CITY field of address d R .
Error call if CTR ‘2 1 or CTR FETNUM

FUNCTION: A DDCO RA ICT R SIR) MODULE: ASM lADD COMMAND OR 
~4 C T iV lT Y l

INPUT PARAM ETERS:

Name Type Desc ription

CTR Ir uege r Numbe , of address beicg access e d

STR Str ing St r i n g to be c iuu eui as new CORA
of addre ss

FUNCTION VALUE TYPE: None

FUNCTION VA LUE: None

EFFECTS Store s str i ng STR in CORA f i eld of address CTR
Error  cal u i f  CTR < I or CTR FETNUM

FUNCTION: AODGNICTR SIR MODULE: ASM ADD G I V E N  NA MEI

INPUT PARAMET ERS:

Name Type Descript ion

CTR Integer Numbe r of addre ss being accessed

SIR String String to be stored as new GN field
of address

FUNCTION VA LUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores str i ng STR in GN field of address CIA .
Error call if CTR < 1 or CTR FETNUM

Fi~ 6 — Informal specifications

14

— 
- —

~~~~~~~~~ — - ~..A ..,
~~~~

— - 
.. L ~~~~~~~~~~~~~~ —



NRL REPORT 8047

FUNCTION: ADDGSL tCTR ,STR ) MODULE: ASM (ADD G S LEVEL)

INPUT PARAMETERS:

Type Description

CIA Intege r Number of address being accessed

STA Stri ng String to be stored as new GSL
field of ad&ess

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string STR in GSL field of address CIA.
Error call i f CTR < 1 or CIA FETNUM

FUNCTION: ADDLN (CTR .STR I MODULE: ASM (ADD LAST NAME)

INPUT PARAMETERS:

N.m. Type Description

CTR Integer Number of address being accessed

STA Si r ig String to be stored as new LN
field of address

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string SIR in LN f ie ld of address CTR
Error call if CIR < 1 or CIA FETNUM

FUNCTION: ADDSERV (CTR ,STR I MODULE: ASM (ADO SERVICE B R A N CH )

INPUT PARAMETERS:

Name Type Description

CIA Integer Numbe r of address being accessed

STR String String to be stored as new SERV
field of address

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string SIR in SERV field of address CIA.
Error call if CTR < 1 or CIA FETNUM

1-ig. 6 lConti nued~ — Informa l specifications

p I c

.— - 
- 

~~~~~~~~~~~~~~~ .-- ~~~~~~~~~~~~ - - -


pip._ .—
~~
- - - - - ., - -

~
-- —

~~ — --~
-- -

~~~~
_ —.,-----.- --- .

D. L. PARNAS

‘

~~ FUNCTION: ADDSORP(CTR ,STRI MODULE: ASM (ADD STREET OR P.O. BOX )

INPUT PARAMETERS:

Name Type DescrIption

CTR Integer Number of address being accessed

SIR String String to be stored as new SOAP
f ie l d o f add ress

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string SIR in SOAP field of address CTR.
Error call if CIA < 1 or CIA FETNUM

FUNCTION: ADDSTATE (CIR ,SIRI MODULE: ASM [ADD STA TE )

INPUT PARAM ETERS:

Name Type Description

CIA Integer Number of address being accessed

SIR String String to be stored as new STATE
f ield of address

FUNCTI ON VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores stri ng SIR in STATE field of address CIA
Error call if CIA < 1 or CIA FETNtJM

FUNCTION: ADDT ITICTR ,SIAI MODULE: ASM (A DD TITLE)

INPUT PARAMETERS:

N.m. Type Description

CIA Integer Number of address being accessed

SIR String String to be stored as new III
fiel d of address

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string SIR in Ill field of address CIA .
Error call if CIA < 1 or CIA FETNUM

Fig . 6 Cont inued) — Informa l specifications

16

L L .~~~~~~~~~~~~~~
-
~ Lr--~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - . - -~~-



NRL REPORT 8047

‘1~

FUNCTION: ADDZI P(CIR ,SIA ) MODULE: ASM [ADD ZIP CODE)

INPUT PARAM ETERS:

Name Type Descr ipt ion

CIA Integer Number of address being accessed

STA String String to be stored as new ZIP
field of address

FUNCTION VALUE TYPE : None

FUNCTION VALUE: None

EFFECTS: Stores string SIR in ZIP field of address CIA.
Error cal l it CTR < I or CTR FETNUM

FUNCTION: INIT MODULE: ASM (INITIATE)

INPUT PA RAMETERS : None

Name Type Desc ription

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: ln it ia l izea storage array by declaring tile and dimension and setting
flags for maximum number of addresses allowed

FUNCTION: FEIBORCICIR) MODULE: ASM (FETCH BRANC H OR CODE)

INPUT PARAM ETERS:

Name Type Descriptio n

CIA Intege r Number of address being accessed

FUNCTION VALUE TYPE: Stri ng

FUNCTION VALUE: BORC field of add ress CIR

EFFECTS: Error call if CIA < 1 or CIA > FEINUM

Fig . 6 (Continued) — Informa l specifications

17

~~~~ ~~~~~~~~~ - ~~~~~~~~~~~~~~~~~ - ~~~~

.•

~~~~~~~ --- :~z .~~ ——-~~ -—-— - .



P.-.--- — -.-- — .— --- .. - . - .,. . — — — -. .— -- - —.-,

D. L. PARNAS

FUNCTION: FETCITY (CTR ) MODULE: ASM [FETCH CITY)

INPUT PARAM ETERS:

Name Type Description

CIA Integer Number of address being accessed

FUNCTION VALUE TYP E: String

FUNCTION VALUE: CITY field of address CIA

EFFECTS: Error call if CIA < 1 or CIA > FETNUM

FUNCTION: FEICORAICIRI MODULE: ASM [FErC H COMMAND OR ACTIV ITY )

INPUT PARAMETE

Name Type Descriptio n

CIA integer Numbe, of address be.rig accessed

FUNCTION VALUE TYPE: String

FUNCTION VALUE: CORA f ie ld of address CIA

EFFEC TS: Error call :1 CIA < 1 or CIA > FETNUM

FUNCTION: FEIGNICIRI MODULE: ASM ‘F E TCH GIVEN P~AM~

INPUT PARAMETERS:

Name Type Descr iption

CIA Integer Number of addrets being accessed

FUNCTION VALU E ‘DE: Strung

FUNCTION VALUE: GN field of address CIA

EFFECTS: Error call ,f CIA < 1 or CIA > FETNUM

Fig. 6 (Continued) — Informal specifications

I8

- - —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _  
.~~~~~~~~~~ .. - - -~~~ -- 

.~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~ -—
~~~
- - -

~~~~~
-

~~~~~~~~ 
- . - -—--- --.—

NRL REPORT 8047

FUNCTION: FETGSL(CTR) MODULE: ASM (FETCH GS LEVEL(

INPUT PARAMETERS:

Name Typ e Description

CIA In teger Number of address being accessed

FUNCTION VALUE TYPE: Stri ng

FUNCTION VALUE: GSL field of add ress CTR

EFFECTS: Error call if CTR < 1 or CTR > FETNUM

FUNCTION: FETLN(CTR) MODULE: ASM (FETCH LAST NAME)

INPUT PARAMETERS:

Name Type Description

CIA Intege r Number of address being accessed

FUNCTION VALUE TYPE: String

FUNCTION VALUE: LN field of address CIR

EFFECTS: Erro r call if CIR < I or CIA > FETNUM

FUNCTION: FETSERV(C IR) MODULE: ASM (FETC H SERVICE)

INPUT PARAMETERS:

Name Type Description

CIA Integer Number of address being accessed

FUNCTION VALUE TYPE: String

FUNCTION VALUE: SERV field of address CTR

EFFECTS: Error call if CIA < 1 or CIA > FETNUM

Fig . 6 (Continued) — Informal specifications

19

- . . .z ia. . - ~~~~~~~~~~~~~~~~~~~~~~ . - ~~~~~:~
•: ‘ •~;=:~-r-~-— - .1~Lt - — .~~ ..~~~~~ _— .-.-



.----~ 
~~~~-— ~~~~ - . - — -~~~~~~—

I). L. PA R N A S

1~i

FUNCTION: FETSORP(CTR) MODULE: ASM FETC H STREET OR P 0 BOX)

INPUT PARAMETERS:

N.m. Type Description

CIR Integer Number of address being accessed

FUNCTION VALUE TYPE: Strung

FUNCTION VALUE: SOAP field of address CIA

EFFECTS: Error call if CIA < 1 or CIA > FETNUM

F U N C T I O N : F EI S T A T E I C I RI MODULE: ASM FETC H STA TE)

INPUT PARAMETERS:

Name Type Description

CIA Integer Number of address being accessed

FUNCTION VALUE TYPE: String

FUNCTION VALUE: String

FUNCTION VA LUE: STATE ‘ ield of address CIA

EFFECTS: Error call 1 CTR < 1 or CIA > FEINUM

FUNCTION: F E T T I T (C I R u MODULE: ASM F E T C H T I T L E]

INPUT PARAME TERS:

Name Type Description

CIA Integer Number of address being accessed

FUNCTION VA LUE TYPE: String

FUNCTION VALUE: lIT field of address CIA

EFFE CTS: Err or call if CIA < 1 or CIA > FETNUM

Fig. 6 (Continued) — Informal s pecifications

20

_ _ _ _ _ _ _
I

-
~

-
~

-
~

-

NRL REPORT 8047

FUNCTION: FETZ IP(CTR) MODULE: ASM (FETCH ZIP CODEI

INPUT PARAMETERS:

Name Type Description

CIA Integer Number of address being accessed

FUNCTION VALUE TYPE: String

FUNCTION VALUE: ZIP field of address CIR

EFFECTS: Error call if CTR < 1 or CIA > FEINUM

FUNCTION: SETNUM (N) MODULE: ASM (SET NUMBER]

INPUT PARAMETERS:

Name Type Description

N Integer Number of addresses read

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Sets number of addresse s actuall y stored .

FUNCTION: FETNUM MODULE: ASM (FETCH NUMBER)

INPUT PARAMETERS: None

Name Type Description

FUNCTION VALUE TYPE: Integer

FUNCTION V ALUE: Number of addresses stored by ASM

EFFECTS: None

Fig I, lConiin ued) — lnfisrma l spc .ili i.atiiins

2 1

L. ~~ --
~~~~~~

-
~~~
—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .~~~~~~~~~__ - _~~~~~~~~



—. - , 
~~~~~~~~~~ ; - ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ - -.:~ -__  ~~~~~~~~~~~ 

- . . —
~~~

.

D. L . PARNAS

MODULE: ASM

SYNTAX

IN I T : -. asm

ADDT IT: Sam X integer X string -. asm
ADDGN: asm X integer X string -+ asm
ADDLN: asm X integer X string -

~ asm
ADDSERV : asm X integer X string -. asm
ADDBORC: urn X integer X string — asm
ADDCORA: asm X integer X string -

~~ asm

ADDSORP: urn X integer X string -
~~ asm

ADDCITY: asm X integer X string -
~ asm

ADDSTATE : asm X integer X sUing -
~~ acm

ADDZIP: asm X integer X string -. asm

ADDGSL : asm X integer X string -~~ asm

SETNUM: urn X integer - asm
FETTIT: asm X integer —~ string

F E I G N :  urn X integer -~ string
FEIGN: asm X integer - string

FETLN: asm X integer -
~~ string

FETSERV: asm X integer —‘ string

FETBORC: asm X integer —e string

FETCORA : asm X integer -, string
FETSORP : asm X integer -* string

FETCITY : urn X integer —. st r i n g

FETSTATE: asm X integer -
~ string

FETZIP: urn X integer -‘ string

FETGSL: asrn X integer -
~~ string

FETNLJM: asm -. integer

Fig. 7 — Form al specifications

22

_ _ _ _ _ _ _ _ _  _ _ _  _ _ _ _ _ _ _ _ _  ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



NRL REPORT 8047

Exp lic it parameters : Integer addr and string str

Implicit parameters:

Type Name Default

asm asrn System asrn

Function value type: hidden from user.

Semantics:

V integer addr , V asm asrn, V string str

FETa (INIT , addr) error

If ad dr ~ 0 or addr > FETNUM(asm)

then FETcs(asm ,addr) = error

else FETa (ADDt3(asm ,add r ,str ), addr ’) =

if a * L3 or addr * addr ’

then FET a (as rn,addr ’)

else str

F E T N U M ( I N I T ) = error

FETNUM(SETNUM(asm ,i) ) =

FETNUM(ADDO(asm ,addr ,str )) = FETNUM(asm)

FETNUM(FETa(asrn,addr)) = FETNUM(asrn)

where a and i3 range over the strings:

~‘GN’ , ‘LN’ , ‘SERV’ , BORC’ , ‘CORA , SORP’ , ‘CITY’ . ‘STATE’ , ‘ZIP’ , ‘T IT’ , ‘GSL }

Fig. 7 lCOfltiflUCd ) — Formal specifications

23

______ 
- 
_  _  

_  
_- ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~~~~~~~~~~~~ - ---


D. L. PAR NAS

These specifications have been used (in an NRL course on software eng i neering) to pro-
cess address lists, of which some were in the format shown in Fig. 2 and others were in that
shown in Fig. 3. The application programs were used without change for files of both formats.
The file access functions defined in Figs. 6 and 7 were used without change by several applica-
tion programs. One of the applications was a program to select the addresses within the Wash-
ington Military District (using the zip code); the other picked out V IPs, considering au officers
of R ANK 0-6 or higher and all “equivalent ” civilians as VIPs. The method used was indepen-
dent of the format of the input; use of the abstract interface allowed these programs to be pro-
cured without knowledge of the input format and to be used with two distinct file formats.

ON THE NEED FOR ASSUMPTIONS THAT ARE
NOT SHARED BY ALL POSSIBLE INTERFACES

The assumptions that were listed and expressed in the specifications are sufficient for
writing some of the application programs but may not be sufficient for all of them. For exam-
pie , we ha ve stated that the zip code will be a string and have not stated that the string is a
nonnegative integer less than 10000. Any program that made this assumption (for example , by
using the zip code as an index to a 10,000-element array) could not be demonstrated to be
corect without stating this additional assumption. The price that one pays for making this as-
sumption is that it rules out postal codes for many foreign countries. This may be an accept-
abl e limitation; a program computing statistics on U.S. zip-code usage is inherent ly restricted
i n its applicability. We should however avoid making such an assumption unwi t t i ng ly . The
use of precise speci fications and a programmin g-language compiler that performs type-checking
[8 ,9) would detect many such errors early in the development of the system.

In procuring a set of programs using an abstract interface , wher e some of the pr ograms
need not make the additional assumptions , it is preferable that the additional information (the
less abstract interface) not be supplied to those writ ing programs that can be writ ten wi thou t it
[31.

If two programs are based on more assumptions than the rest of the package, they need
not necessarily make the same additional assumptions. One example would be a program that
was designed to process British addresses to determine which county the addressee lived in.
Such programs would want to assume that the postal code was a six-character string with the
mnemonic coding used in Britain. Other programs might make the assumption that ‘title ” was
restricted to military ranks , Use of the phrase “less abstract ” may be an abuse of language. It
implies an ordering that may not exist.

COMPLETING THE SYSTEM BY STEPWISE
AD DITION OF ASSUM PTIONS

As we stated earlier , the assumptions implicit in the abstract-interface specifications will
not usually allow us to write a complete system . To complete the system, we must make addi-
t ional assumptions.

The esc ept ion to this statement would be all of the possib le interfaces being such that one can identify the actual in-
terface by studying the input data.

24

- —---——
. .

.- - ..

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
- — - - — -



N R L  REPORT 8047

Often one will complete the system in a single step, but sometimes it pays to proceed
more slowly. Consider the address file specification and set of assumptions. They assume a
previously defined data-type str ing. If the language or library does not include a string-
manipulation facility, such a facility must be provided to complete the system. For any string
implementation some assumptions must be made about the total number of strings in the sys-
tem and their expected size . In applications like ours it is reasonabl e to assume a fixed upper
bound for the length of a string. Using this additional information , one can define an interface
to the string-m anipulation package (Figs. 8 and 9). The implementati on of these functions
gives us a second component of our system. The first component will work for any format that
meets our original assumptions. The second component assumes nothing about the order or
content of the input information but assumes that no item need exceed a set length. Use of
the combined package is predicated on both sets of assumptions , but should the maximu m -
length assumption prove wrong, only the string portion need be changed. The implementation
of the FETCH and SET functions will then assume a complete descripti on of the actual format
including the fixed-length limitation.

One way that the additi onal assumptions may be made explicit in the definition of the
abstract interface is by the introduction of functions that are not implementable unless the as-
sumptions are met. For example , i f we are willing to make the assumption that the address al-
ways det ermines the county in which the address is located , we may add the function COUN-
TY to the abstract interfac e. Programs that use COUNTY can be used only with input files
such that the county can be determined from the data present.

WHERE IS THE SEMAN TIC SPECIFICATI ON?

Notably absent from any of the assumptions or interface specifications in this report is
any formal statement about th e meaning of the information in the strings. Nothing in our in-
terface forbids someone inserting a house number in the zip code field or interpreting a zip
code as a house number.

Systems of the sort that  we are discussing provide information storage , transmission , and
retrieval functions. Any assumptions about the relation between the informati on in the sys-
tem and phenom ena in the outside world are agreements between those who insert data in the
system and those who use data from the system. The system is not concerned with any as-
pects that  it is not required to verify .

Any information about th e meaning of the data (how it is obtained or what should be
done with it ) will not be part of the abstract (or internal )  interface that we are discussing. The
specifications for the larger system of which the embedded computer system is a part must in-
clude this additional information.

IMPLEMENTATI ON CONSIDERATIONS
AND LANGUAG E LIMI TATIONS

The specifications that are obtained by following the method proposed in this report as-
sume the existence of data types that  might not be built  into the programming language being
used. In the address exampl e the specifications referred to a type (str ing) that is available in

25

L . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--.-

~~~~~

. -

~~~~~~ 

-. -

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~~~~~



--

D. L. PARNAS

NAME: BLANKSTR ING MODUL E: STM

SYNTAX

BLANKSTRING: -, string

Explicit parameters: None

Implicit parameters: None

Function value type: string

SEMANTICS

Initial value: None

Function value: str e string , such that

v i , 1 ~ i ~ MAX ST R I N G , RETCHAR(st r ,i)

Effects: None

NAME: INSERT MODULE: STM

SYNTAX

INSERT : string X integer X char -~ string

Explicit para meters: string str , integer b c , char c

Implicit parameters: None

Function value type: str ing

SEMANTICS

Initial value: None

Function value: str , such that

V I , 1 ‘~~ ~ MAXSTR ING , if i b c , then CHAREO (c ,RETCHAR Ist r ,i)) TRUE

else CHAR EQ( A ETCHAR(str ,il ,RETCHAR(str ’,i}~ = TRUE

Effects: If b c  < 1 or b c >  MAXSTRING , then E R R O R C A L L

Fig. 8 — Formal speci fi cation of the string modules (STM)

26

—‘;--.:~-t~_ -~~~~~~~“~~~~~~~
-

~~~~ -. -- 
—

—
~~~~~~ - -



r4R L REPORT 804 7

NAME: MAXSTRING MODULE: STM

SYNTA X

MAXSTRING -~ Integer

Explicit parameters: None

Implicit parameters: None

Function value type: integer
SEMANTICS

Initial value: None

Function value: k, such that Vi, 1 < i ~ k ,
CHAREO(RETCHAR(BLANKSTRING,iL ’ ’) TRUE

and Vi, j > k, Vs e string
RETCHAR (s ,j) is undefined

Effects: None

NAME: RETCHAR MODULE: STM
SYNTAX

RETCHAR: string X in teger -
~ cher

Explicit parameters: string str , integer b c

Implicit pata meters: None

Function value type: integer

SEMA NTICS

Initial value: None

Function value: V i, j 1 < i, j ~ MAXSTR ING ,

R ETCHAR(BLANKSTRINGM
RETCHAR(INSERT(str ,i,c).j ) = if i

then c

else RETCHAR(strj )

Fig . 8 (Continued) — Formal specification of the string module (STM)

27

- .
~~~~~~~~~~~ . - -


r-.

1) L PAR ~s A S

FUNCTION CALLING FORM: BLANKSTR ING(NEW) MODULE: STM
it INPUT PARAMETERS:

Type Description
NEW String Fixed-length string consist ing

of b lan k s which is returned
FUNCTION VALUE TYPE: None
FUNCTION VALUE: None

EFFECTS: Initializes a string, NEW , to blanks and returns it

FUNCTION CALLING FORM: INSERT (STR ,LOC ,CHR) MODULE: STM
INPUT PARAMETE RS:

Name
Iy.~~~~

Description
STR String String to be proce ssed
LOC Integer Position in string to insert character
CHR Char Character to be inserted

FUNCTION VALUE TYPE: None
FUNCTION VALUE: None
EFFECTS: Replaces LOCth character of STR w ith CHR . Err or call if LOC < 1 or

LOC > MAXSTR ING

FUNCTION CALLING FORM: MAXST RING MODULE STM
INPUT PARAMETER S: None

Type Description
FUNCTION VALUE TYPE : Integer
FUNCTION VALUE: Length of strings
EFFECTS: None

FUNCTION CALLIN G FORM: RETC HAR(STR ,LOC) MODULE: STM
INPUT PARAMET ERS:

Name Description
STR String String to be accessed

• LOC Integer Location in string of
character sought

FUNCTION VALU E TYPE: Char
FUNCTION VALU E: The character in the LOCth position in string SIR .
EFFECTS : Error call f LOC < 1 or LOC > MAXSTR ING

Fig. 9 — Informal specification of the stnng module

28

~~~~~~~ -.- ---~~~~~~



NRL REPORT 8047

some languages but  unava i l ab le  or ava i lab le  wi th  strong l imi t a t ions  in other languages. In oth-
er examples  we would wr i t e  specifications in terms of even more specialized types (such as

it dates ) that  would cer ta inly  not be bui l t  in to  a languag e.

The assumption of the existence of a data type  is the assumption of the existence of data
elements  and operators If they  are not bu i l t  in to  the language , there is no reason the opera-
tors cannot  be provided by means of macros or subroutines.  However our specificat ions go
fur the r  — they  assume the  ab i l i t y  to pass objects or values of the special type to procedures
and the  ab i l i t y  to define procedures tha t  re turn  va lues of this  type.

If the language that  must  be used does not provide data-type ex tens ib i l i ty ,  there  is always
a subterfuge by wh ich  the  ab i l i ty  to pass and ret urn values of the new type can be simulated.
The method chosen w i l l  depend on the language available , the  relat ive importance of t ime and
space eff ic i ency , and se cu r i ty  considerations. What ever  the method chosen , it wil l  require the
adoption of certain p rogramming  convent ions .  (Often these conventions cannot be enforced
b~ the  compiler . )  The adoption of these convent ions  wi l l  sometimes be simply a fu r the r
re t inement  of the  abstract  interface (making  fu the r  assumptions)~ in other cases it wi l l  require
a change in the  sy n tax  for calls on the funct ions  defined by the specifications. The semantics
of the funct ions  specified w i l l  stay the same , but  parameters may be passed through  common
blocks , global variables , p ointers , etc.

The need to refine or alter our interface to accommodate the  l imita t ions  of our present
programming tools does not contradict the val idi ty  01 the  proposed method . In the actual im-
pl ementat ion the syntax used for calling funct ions  and communica t ing  information between
cal l ing program and called program may be di fferent from that specified dur ing  the design of
the  interface , but  the informat ion to be passed wil l  not be a ffected.

CONCLUDIN6 R E M A R K S

The purpose of this  report has been to explai n and demonstrate a systematic software-
procurement procedure by means of which  one may isolate the bulk of the software from
changes in the actual external  interface ,  If the specifications of the abstract interface are used
to de fine the responsibi l i ty  of the  organization that  delivers the  internal  software , that  orga niza-
tion is effectively preve nted from producing a system that is tied to any one particular int er-
face. Moreover they must deliver a program that  can be “completed” by persons without
knowledge of internal  details.

There are additio nal benefits. This process leads toward what  is sometimes referred to as
a clea ner structure of the software — one in which there is a good separation of concerns , al-
lowing each component  to be simpler and more easily understood . Fur ther , those compo nents
that  are not cognizant  of the real-world details of the interface can be more elega nt and subject
to a more mathematical  analysis. Elegance is not a property of systems that  must deal wi th
ugly real world facts , but it can be obtai ned in those components  that  are separated from the
real world by the use of well-defined interfaces.

REFERENCES
1. D L .  Parnas , “On the Design and Developm ent of Program Families ,” IEEE Transactions

on Software Engineer ing  SE-2 (No. 1) . 1-9 (Mar.  1976) .

29

~ 

~~~
- --

~~~~~~~~~~ - —~~~~~ . . --



-~ - --——=.- -- - - - - . -- • -. — -- ------ ------ .- —---- - .- -- -- - .- - -- 

~

‘1

0. L. PARNAS

‘it
2. DL. Parnas , “On the Criteria To Be Used in Decomposing Systems into Modules,” Com-

munications of the ACM 15 (No. 12), 1053-1058 (Dec. 1972) .
3. D.L. Parnas , “Information DIstribution Aspects of Design Methodology, Proceedings. ” 1971

IFIP Congress , North Holland Publishing Co.
4. D.L. Parnas , “A Technique for Software Module Specification with Examples ,” Communica-

tions of the ACM 15 (No. 5) , 330-336 (May 1972),
5. E.W. Dijkstra, C.A.R. Hoare, and OJ. DahI, Structured Programming, Academic Press, Lon-

don, 1972,
6. N. Wirth , “Program Development by Stepwise Refinement,” Communications of the ACM

14 (No. 4) , 221-227 (Apr , 1971) .
7. J. Guttag, “Abstract Data Types and the Development of Data Structures ,” SIGPLAN , SIG-

MOD Conference on DATA: Abstraction Defin ition and Structure (to be published in
Communications of the ACM) .

8. D.L. Parnas , J. Shore , an d D. Weiss , “Abstract Types Defined as Classes of Variables ,”
Proceedings of ACM Conference on DATA: Abstraction , Definition , and Structure ,
March , 1976.

9. CS-4 Language Reference Manual and Operating System Interface , Oct. 1975 , lntermetrics ,
Inc.

ACKNOWLEDGMENTS

Discussions with H. Elovitz , John Guttag, John Shore , Barbara Trombka , and David
Weiss have contributed a great deal to this report. Questions raised by H. E lovitz in an effort
to apply these concepts led to especially significant changes.

uS oOvI~ NutNT p~~NnNO OcFICI 1977’ 240 .524 /154  .~ 30

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘ - ~~~~~~~~~ ,- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~ t. -.

